🔗 Relationships
This guide covers how to work with different types of relationships in Django Structured JSON Field.
🔄 Types of Relationships
The field supports three main types of relationships:
- 📦 Recursive relationships
- 🔑 Foreign Key relationships
- 🔀 Many-to-Many relationships (QuerySet fields)
📦 Recursive Relationships
Recursive relationships allow you to create self-referential structures in your schema.
🧩 Basic Recursion
from typing import Optional, List
from structured.pydantic.models import BaseModel
class MySchema(BaseModel):
name: str
age: int = None
parent: Optional['MySchema'] = None
relateds: List['MySchema'] = []
🚀 Usage Example
# Create a parent instance
parent = MySchema(name="Parent", age=40)
# Create a child instance
child = MySchema(name="Child", age=10, parent=parent)
# Create a model instance
model_instance = MyModel.objects.create(
title="Example",
structured_data=child
)
# Access the parent
print(model_instance.structured_data.parent.name) # "Parent"
🔑 Foreign Key Relationships
Foreign Key relationships allow you to reference other Django models in your schema.
🧩 Using ForeignKey Field
from structured.pydantic.fields import ForeignKey
from structured.pydantic.models import BaseModel
from myapp.models import SomeModel
class MySchema(BaseModel):
name: str
age: int = None
fk_field: ForeignKey[SomeModel] = None
🔄 Alternative Syntax
You can also use the model class directly as the type annotation:
from structured.pydantic.models import BaseModel
from myapp.models import SomeModel
class MySchema(BaseModel):
name: str
age: int = None
fk_field: SomeModel = None
The field will still be treated as a ForeignKey if the type annotation is a subclass of Django models.Model
.
🚀 Usage Example
from myapp.models import SomeModel
# Create a related model instance
related_model = SomeModel.objects.create(name="Related")
# Create a schema with foreign key
schema = MySchema(
name="Main",
age=30,
fk_field=related_model
)
# Create a model instance
model_instance = MyModel.objects.create(
title="Example",
structured_data=schema
)
# Or create using a dictionary with the ID of the related model
model_instance = MyModel.objects.create(
title="Example",
structured_data={
"name": "Main",
"age": 30,
"fk_field": related_model.id # Using the ID directly
}
)
# Access the foreign key
print(model_instance.structured_data.fk_field.name) # "Related"
🧠Abstract Models as Foreign Keys
You can also use abstract models as foreign keys:
from django.db import models
from structured.pydantic.fields import ForeignKey
from structured.pydantic.models import BaseModel
class AbstractModel(models.Model):
common_field = models.CharField(max_length=100)
class Meta:
abstract = True
class ConcreteModel1(AbstractModel):
specific_field = models.CharField(max_length=100)
class ConcreteModel2(AbstractModel):
another_field = models.CharField(max_length=100)
class MySchema(BaseModel):
name: str
age: int = None
abstract_fk: ForeignKey[AbstractModel] = None
Usage:
# The field will accept any model that inherits from AbstractModel
instance1 = ConcreteModel1.objects.create(common_field="test1", specific_field="test2")
instance2 = ConcreteModel2.objects.create(common_field="test3", another_field="test4")
# Both can be used in the abstract_fk field
model_instance = MyModel.objects.create(
title="Example",
structured_data=MySchema(name="Test", age=25, abstract_fk=instance1)
)
# You can change the related model to a different subclass
model_instance.structured_data.abstract_fk = instance2
model_instance.save()
🔀 Many-to-Many Relationships (QuerySet Fields)
Many-to-Many relationships are handled using the QuerySet
field.
🧩 Using QuerySet Field
from structured.pydantic.fields import QuerySet
from structured.pydantic.models import BaseModel
from myapp.models import SomeModel
class MySchema(BaseModel):
name: str
age: int = None
qs_field: QuerySet[SomeModel]
🚀 Usage Example
from myapp.models import SomeModel
# Create some related instances
related_instances = SomeModel.objects.bulk_create([
SomeModel(name="Related1"),
SomeModel(name="Related2"),
SomeModel(name="Related3")
])
# Create a schema with a queryset
schema = MySchema(
name="Main",
age=30,
qs_field=SomeModel.objects.all() # Using a QuerySet
)
# Create a model instance
model_instance = MyModel.objects.create(
title="Example",
structured_data=schema
)
# Or create using a dictionary with the IDs of the related models
model_instance = MyModel.objects.create(
title="Example",
structured_data={
"name": "Main",
"age": 30,
"qs_field": [1, 2, 3] # Using a list of IDs
}
)
# Query the related objects
filtered = model_instance.structured_data.qs_field.filter(name__startswith='Related')
count = model_instance.structured_data.qs_field.count()
first = model_instance.structured_data.qs_field.first()
# Change the queryset
model_instance.structured_data.qs_field = SomeModel.objects.filter(name="Related1")
model_instance.save()
🔄 QuerySet Order Preservation
The QuerySet field maintains the order of the given QuerySet:
# Create with ordered queryset
model_instance = MyModel.objects.create(
title="Example",
structured_data={
"name": "Main",
"age": 30,
"qs_field": SomeModel.objects.all().order_by("name")
}
)
# Access ordered queryset
first = model_instance.structured_data.qs_field.first() # First alphabetically
last = model_instance.structured_data.qs_field.last() # Last alphabetically
📦 Nested Relationships
You can combine these relationship types in nested structures:
class ChildSchema(BaseModel):
name: str
age: int = None
fk_field: SomeModel = None
qs_field: QuerySet[SomeModel]
class ParentSchema(BaseModel):
name: str
age: int = None
fk_field: SomeModel = None
child: ChildSchema = None
Usage:
child_data = ChildSchema(
name="Child",
age=10,
fk_field=related_model2,
qs_field=SomeModel.objects.filter(name__in=["Related3", "Related4"])
)
parent_data = ParentSchema(
name="Parent",
age=40,
fk_field=related_model1,
child=child_data
)
model_instance = MyModel.objects.create(
title="Example",
structured_data=parent_data
)
# Access nested relationships
parent_fk = model_instance.structured_data.fk_field.name
child_fk = model_instance.structured_data.child.fk_field.name
child_qs_count = model_instance.structured_data.child.qs_field.count()
Best Practices
Recursive Relationships:
- Use
Optional
for single references - Use
List
for multiple references - Be careful with circular references to avoid infinite loops
- Use
Foreign Key Relationships:
- Always provide a default value (usually
None
) - Consider using the direct model class syntax for simplicity
- Handle potential null values in your code
- Always provide a default value (usually
Many-to-Many Relationships:
- Use
QuerySet
for flexible querying - Consider performance implications of large querysets
- Use appropriate filtering to limit queryset size
- Use
Common Issues and Solutions
Circular Imports:
- Use string literals for model references (
'ModelName'
) - Import models at the function level if needed
- Use string literals for model references (
Performance:
- Enable caching to optimize query performance
- Use appropriate indexing on related fields
- Use
select_related()
for foreign keys when fetching models
Validation:
- Ensure related objects exist before assignment
- Handle null values appropriately
- Validate queryset results before assignment
Next Steps
After understanding relationships, you might want to explore:
- Admin Integration for managing relationships in the Django admin
- REST Framework Integration for API endpoints
- Caching for optimizing relationship queries