📦 Installation and Basic Usage
This guide will help you get started with Django Structured JSON Field.
🚀 Installation
Install the package using pip:
pip install django-structured-json-field
🧩 Basic Usage
1️⃣ Define Your Schema
First, you need to define your schema using Pydantic models. Create a new file (e.g., schemas.py
) and define your schema:
from structured.pydantic.models import BaseModel
# Define your schema using Pydantic models
class MySchema(BaseModel):
name: str
age: int = None
# Define an initialization function
def init_data():
return MySchema(name='')
2️⃣ Create Your Model
Now, create a Django model that uses the StructuredJSONField:
from django.db import models
from structured.fields import StructuredJSONField
class MyModel(models.Model):
title = models.CharField(max_length=100)
structured_data = StructuredJSONField(schema=MySchema, default=init_data)
3️⃣ Create and Apply Migrations
python manage.py makemigrations
python manage.py migrate
4️⃣ Using the Model
You can now use your model as you would with any other Django model:
# Create a new instance with a dictionary
instance = MyModel.objects.create(
title="Example",
structured_data={"name": "John Doe", "age": 30}
)
# Or create with a schema instance
schema_instance = MySchema(name="John Doe", age=30)
instance = MyModel.objects.create(
title="Example",
structured_data=schema_instance
)
# Access the structured data
print(instance.structured_data.name) # "John Doe"
print(instance.structured_data.age) # 30
# Update the structured data
instance.structured_data.age = 31
instance.save()
🔑 Key Concepts
- 📐 Schema Definition: Your schema defines the structure and validation rules for your JSON field.
- 🔄 Default Values: The
init_data
function provides default values for new instances. - ✅ Type Validation: The field automatically validates data against your schema.
- 🚫 Null Values: Fields can be optional by providing default values (like
None
). - 📥 Data Input: You can provide either a dictionary or a schema instance when creating or updating records.
💡 Best Practices
- Always define an initialization function (
init_data
) to provide default values. - Use type hints in your schema for better IDE support and validation.
- Consider making fields optional if they're not always required.
- Use descriptive field names that clearly indicate their purpose.
- Test your schema with both dictionary and object inputs to ensure it works correctly.
❓ Common Issues and Solutions
- 🚧 Migration Errors: If you encounter migration errors, ensure your schema is properly defined before running migrations.
- ⚠️ Validation Errors: The field will raise validation errors if the data doesn't match your schema.
- 🔄 Default Values: Always provide appropriate default values to prevent null value issues.
📦 Nested Structures
You can also define nested schemas:
class ChildSchema(BaseModel):
name: str
age: int = None
class ParentSchema(BaseModel):
name: str
age: int = None
child: ChildSchema = None
Example usage:
# Create with nested data
instance = MyModel.objects.create(
title="Example",
structured_data={
"name": "Parent",
"age": 40,
"child": {
"name": "Child",
"age": 10
}
}
)
# Access nested fields
print(instance.structured_data.child.name) # "Child"
🔄 Next Steps
After mastering basic usage, you might want to explore: